Система Oph-IRS 48, где впервые удалось обнаружить пылевую ловушку
Астрономы объяснили, как небольшие комки космической пыли превращаются в планетезимали в аккреционном диске звезды. По мнению ученых, в этом процессе важную роль играют так называемые пылевые ловушки и аэродинамическое сопротивление.
Работа ученых опубликована в журнале Monthly Notices of the Royal Astronomical Society.Планетные системы, подобные Солнечной системе, начинают свое существование в виде газопылевого диска вокруг звезды. Частицы пыли в протопланетном диске хаотически двигаются вместе с потоками газа, при этом сталкиваясь и слипаясь друг с другом. Постепенно эти небольшие комки космической пыли, размером всего в несколько сантиметров, собираются в гораздо более крупные тела, называемые планетезималями. Именно они служат зародышами для будущих планет.
Учеными хорошо изучено, благодаря каким процессам частицы пыли превращаются в маленькие комки, а также каким образом километровые планетезимали образуют ядра планет. В то же время, астрофизикам до сих пор было очень мало известно о том, как космическая пыль формирует тела, по размерам сравнимые с астероидами.
Для того, чтобы комки пыли могли стать планетезималями, им необходимо преодолеть два препятствия. Во-первых, из-за баланса давления, гравитации и центробежной силы скорость вращения газа вокруг звезды меньше, чем скорость свободных тел на таком же расстоянии. Как следствие, частицы размером более нескольких миллиметров опережают газ, а встречный поток их затормаживает их и вынуждает по спирали опускаться к звезде.
Чем крупнее становятся пылинки, тем быстрее они «падают» туда, где они испарятся и разрушатся. Во-вторых, подросшие частицы при столкновении друг с другом на высокой скорости могут опять распасться на огромное число более мелких, что повернет процесс накопления массы вспять.Единственная область в протопланетном диске, где обе эти проблемы могут быть решены, это пылевые ловушки. Так называют области высокого давления, где дрейфовое движение замедляется, что позволяет пылинкам слипаться и разрастаться, не разрушаясь при этом при столкновениях. Раньше астрономы считали, что такие пылевые ловушки могут существовать только в очень специфичных условиях, однако авторы новой работы показали, что они должны быть распространены гораздо шире.
Исследователи провели компьютерную симуляцию того, как пылинки взаимодействуют с газом в протопланетном диске. В большинстве случаев движением частиц управляли потоки газа, однако в некоторых, наиболее «пыльных» моделях, по словам ученых, наблюдалась обратная картина, и скопление частиц меняло структуру газа в диске. Такой эффект называется обратное аэродинамическое сопротивление, и, как правило, исследователи его игнорируют при изучении роста и фрагментации комков пыли. Однако авторы работы заявляют, что в «густых» протопланетных дисках он играет важную роль.

Желтая центральная звезда окружена голубым протопланетным диском. Сначала частицы пали растут и движутся к центру, как показывают стрелочки

Затем более крупные зерна скапливаются и замедляют свое движение
После чего газ выталкивается наружу благодаря обратному аэродинамическому сопротивлению и формируются пылевые ловушки
«Мы были очень взволнованы, обнаружив, что при правильном наборе ингредиентов пылевые ловушки могут формироваться спонтанно в самых разных условиях. Это простое и ясное решение давней проблемы формирования планет», — комментирует новость один из авторов работы.
Исследователи еще много лет назад предположили, что в протопланетных дисках должны существовать пылевые ловушки, однако подтвердить эту гипотезу удалось лишь в 2013 году. Тогда астрофизики впервые с помощью телескопа ALMA увидели пылевую ловушку в системе Oph-IRS 48. Кроме того, ALMA недавно помог ученым получить детальные снимки сразу нескольких протопланетных дисков вокруг молодых звезд.
Свежие комментарии