На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Свежие комментарии

  • Eduard
    "Дуб,я Жолудь,прием"!Шимпанзе общаются...
  • Maxim
    Кот-рыболов, Prionailurus viverrinus, ДВ - рулит..Вот почему коты н...
  • Владимир Акулов
    Конечно  ,  все  живые  организмы  общаются  друг  с  другом...Можно  научить  общаться  и  с  человеком...Язык  жест...История жизни сам...

В третий раз зарегистрированы гравитационные волны: что мы можем узнать о Вселенной?

Сегодня международная коллаборация LIGO-Virgo объявила о регистрации гравитационных волн в третий раз в истории. Источником, как и в предыдущие два раза, являлась пара черных дыр. О результатах исследования опубликована статья в Physical Review Letters.



О сигнале GW170104



Со времени первого детектирования и первого научного цикла чувствительность детекторов возросла, а технические шумы уменьшились, что позволило получать данные более высокого качества.


Во время второго рабочего цикла обсерваторий Advanced LIGO был зарегистрирован сигнал, который с большой достоверностью вызван гравитационными волнами — ошибочно такой сигнал может появиться раз в 70.000 лет постоянных наблюдений (соотношение сигнал-шум 13 и достоверность больше 5σ).



Черные дыры массой в ~20 и 30 солнечных слились в одну большую, испуская при этом гравитационные волны общей энергией около двух солнечных масс. Сам процесс слияния занял меньше секунды, а в момент слияния ЧД разогнались до 60% от скорости света!

Сигнал шел до нас около несколько миллиардов лет (источник на расстоянии около 1000МПк), и был зарегистрирован двумя детекторами LIGO в США 4 января 2017 года



Какие знания мы получаем о Вселенной?


В предыдущей статье я рассказывал, откуда мы знаем, что сигнал действительно гравитационно-волновой, и о планах развития гравитационно-волновой астрономии. В этот раз поговорим о том, зачем нам вообще эти детекторы, и что мы можем узнать нового о Вселенной.

Скорость гравитации


UPD: поправил оценку на скорость и добавил способ вычисления.

Самый частый вопрос про гравитационные волны — о скорости их распространения. В Общей Теории Относительности (ОТО) эта скорость равна скорости света.
Эксперимент LIGO подтверждает это с большой точностью: гравитационная волна приходит на два детектора LIGO, расположенных в разных частях США на расстоянии нескольких тысяч километров, с некоторой задержкой, и зная расстояние между детекторами и эту задержку можно дать оценку на скорость распространения. И с точностью до одинадцатого знака после запятой эта скорость равна скорости света.
Как это получить


Тесты ОТО


В более общем смысле, мы можем проверять, насколько наши модели черных дыр подходят под экспериментальные данные. Пока все совпадает:


Хотя для описания пары черных дыр достаточно всего нескольких параметров, аналитическое решение уравнений Эйнштейна для их слияния практически невозможно. Поэтому ученые используют численные расчеты для получения реальных моделей. А где численные расчеты, там и всевозможные приближения, поэтому совпадение полученной модели с экспериментом так важно — это позволяет нам сказать, насколько верны наши представления об ОТО.

Конечно, возможна и проверка на всевозможные модификации ОТО. Некоторые из них могут быть уже исключены — они, например, требуют дисперсии ГВ или превышение скорости света. Другие — ждут увеличение чувствительности детекторов для проверки.
А третьи, как, например, память пространства о волнах, можно проверять уже сейчас.
В общем, увлекательное время предстоит астрофизикам!

Возникновение звезд


Из параметров черных дыр можно получить много информации о космосе и формировании Вселенной. Во-первых, наблюдение грав-волн — это первое свидетельство существования парных черных дыр. Во-вторых, массы этих черных дыр неожиданно велики — никто не ожидал, что парные черные дыры такой массы встречаются столь часто.

Интересные выводы можно сделать о возрасте систем ЧД. Чем раньше с начала Вселенной образовалась звезда, тем меньше вещества предыдущих звезд в ней — меньше содержание металлов. С другой стороны, масса ЧД зависит от количества металлов в ней, поэтому по измеренным массам ЧД можно сказать, насколько молоды были звезды, из которых они образовались. Из этого следует любопытное заключение, что парные ЧД могут образовываться как в звездных кластерах (если окружение достаточно молодое), так и изолированно, что раньше известно не было. Наблюдая за параметрами ЧД, можно сказать как эти дыры были образованы — изолированно или нет.

Дальнейшее наблюдение за параметрами ЧД, такими как орбитальный момент, может дать еще больше понимания в космологических процессах.

За прошедший год LIGO зарегистировала три значимых события, а с увеличением чувствительности детектора в следующем научном цикле количество таких событий будет расти, давая нам все больше знаний о Вселенной.

 

Ссылка на первоисточник
наверх